Integer Rational Real Single precision

Found at: ftp.icm.edu.pl:70/packages/netlib/slatec/gams

A.  Arithmetic, error analysis
A1.  Integer
A2.  Rational
A3.  Real
A3A.  Single precision
A3B.  Double precision
A3C.  Extended precision
A3D.  Extended range
A4.  Complex
A4A.  Single precision
A4B.  Double precision
A4C.  Extended precision
A4D.  Extended range
A5.  Interval
A5A.  Real
A5B.  Complex
A6.  Change of representation
A6A.  Type conversion
A6B.  Base conversion
A6C.  Decomposition, construction
A7.  Sequences (e.g., convergence acceleration)
B.  Number theory
C.  Elementary and special functions (search also class L5)
C1.  Integer-valued functions (e.g., floor, ceiling, factorial, binomial
C2.  Powers, roots, reciprocals
C3.  Polynomials
C3A.  Orthogonal
C3A1.  Trigonometric
C3A2.  Chebyshev, Legendre
C3A3.  Laguerre
C3A4.  Hermite
C3B.  Non-orthogonal
C4.  Elementary transcendental functions
C4A.  Trigonometric, inverse trigonometric
C4B.  Exponential, logarithmic
C4C.  Hyperbolic, inverse hyperbolic
C4D.  Integrals of elementary transcendental functions
C5.  Exponential and logarithmic integrals
C6.  Cosine and sine integrals
C7.  Gamma
C7A.  Gamma, log gamma, reciprocal gamma
C7B.  Beta, log beta
C7C.  Psi function
C7D.  Polygamma function
C7E.  Incomplete gamma
C7F.  Incomplete beta
C7G.  Riemann zeta
C8.  Error functions
C8A.  Error functions, their inverses, integrals, including the normal
      distribution function
C8B.  Fresnel integrals
C8C.  Dawson's integral
C9.  Legendre functions
C10.  Bessel functions
C10A.  J, Y, H-(1), H-(2)
C10A1.  Real argument, integer order
C10A2.  Complex argument, integer order
C10A3.  Real argument, real order
C10A4.  Complex argument, real order
C10A5.  Complex argument, complex order
C10B.  I, K
C10B1.  Real argument, integer order
C10B2.  Complex argument, integer order
C10B3.  Real argument, real order
C10B4.  Complex argument, real order
C10B5.  Complex argument, complex order
C10C.  Kelvin functions
C10D.  Airy and Scorer functions
C10E.  Struve, Anger, and Weber functions
C10F.  Integrals of Bessel functions
C11.  Confluent hypergeometric functions
C12.  Coulomb wave functions
C13.  Jacobian elliptic functions, theta functions
C14.  Elliptic integrals
C15.  Weierstrass elliptic functions
C16.  Parabolic cylinder functions
C17.  Mathieu functions
C18.  Spheroidal wave functions
C19.  Other special functions
D.  Linear Algebra
D1.  Elementary vector and matrix operations
D1A.  Elementary vector operations
D1A1.  Set to constant
D1A2.  Minimum and maximum components
D1A3.  Norm
D1A3A.  L-1 (sum of magnitudes)
D1A3B.  L-2 (Euclidean norm)
D1A3C.  L-infinity (maximum magnitude)
D1A4.  Dot product (inner product)
D1A5.  Copy or exchange (swap)
D1A6.  Multiplication by scalar
D1A7.  Triad (a*x+y for vectors x,y and scalar a)
D1A8.  Elementary rotation (Givens transformation)
D1A9.  Elementary reflection (Householder transformation)
D1A10.  Convolutions
D1B.  Elementary matrix operations
D1B1.  Set to zero, to identity
D1B2.  Norm
D1B3.  Transpose
D1B4.  Multiplication by vector
D1B5.  Addition, subtraction
D1B6.  Multiplication
D1B7.  Matrix polynomial
D1B8.  Copy
D1B9.  Storage mode conversion
D1B10.  Elementary rotation (Givens transformation)
D1B11.  Elementary reflection (Householder transformation)
D2.  Solution of systems of linear equations (including inversion, LU and
     related decompositions)
D2A.  Real nonsymmetric matrices
D2A1.  General
D2A2.  Banded
D2A2A.  Tridiagonal
D2A3.  Triangular
D2A4.  Sparse
D2B.  Real symmetric matrices
D2B1.  General
D2B1A.  Indefinite
D2B1B.  Positive definite
D2B2.  Positive definite banded
D2B2A.  Tridiagonal
D2B4.  Sparse
D2C.  Complex non-Hermitian matrices
D2C1.  General
D2C2.  Banded
D2C2A.  Tridiagonal
D2C3.  Triangular
D2C4.  Sparse
D2D.  Complex Hermitian matrices
D2D1.  General
D2D1A.  Indefinite
D2D1B.  Positive definite
D2D2.  Positive definite banded
D2D2A.  Tridiagonal
D2D4.  Sparse
D2E.  Associated operations (e.g., matrix reorderings)
D3.  Determinants
D3A.  Real nonsymmetric matrices
D3A1.  General
D3A2.  Banded
D3A2A.  Tridiagonal
D3A3.  Triangular
D3A4.  Sparse
D3B.  Real symmetric matrices
D3B1.  General
D3B1A.  Indefinite
D3B1B.  Positive definite
D3B2.  Positive definite banded
D3B2A.  Tridiagonal
D3B4.  Sparse
D3C.  Complex non-Hermitian matrices
D3C1.  General
D3C2.  Banded
D3C2A.  Tridiagonal
D3C3.  Triangular
D3C4.  Sparse
D3D.  Complex Hermitian matrices
D3D1.  General
D3D1A.  Indefinite
D3D1B.  Positive definite
D3D2.  Positive definite banded
D3D2A.  Tridiagonal
D3D4.  Sparse
D4.  Eigenvalues, eigenvectors
D4A.  Ordinary eigenvalue problems (Ax = (lambda) * x)
D4A1.  Real symmetric
D4A2.  Real nonsymmetric
D4A3.  Complex Hermitian
D4A4.  Complex non-Hermitian
D4A5.  Tridiagonal
D4A6.  Banded
D4A7.  Sparse
D4B.  Generalized eigenvalue problems (e.g., Ax = (lambda)*Bx)
D4B1.  Real symmetric
D4B2.  Real general
D4B3.  Complex Hermitian
D4B4.  Complex general
D4B5.  Banded
D4C.  Associated operations
D4C1.  Transform problem
D4C1A.  Balance matrix
D4C1B.  Reduce to compact form
D4C1B1.  Tridiagonal
D4C1B2.  Hessenberg
D4C1B3.  Other
D4C1C.  Standardize problem
D4C2.  Compute eigenvalues of matrix in compact form
D4C2A.  Tridiagonal
D4C2B.  Hessenberg
D4C2C.  Other
D4C3.  Form eigenvectors from eigenvalues
D4C4.  Back transform eigenvectors
D4C5.  Determine Jordan normal form
D5.  QR decomposition, Gram-Schmidt orthogonalization
D6.  Singular value decomposition
D7.  Update matrix decompositions
D7A.  LU
D7B.  Cholesky
D7C.  QR
D7D.  Singular value
D8.  Other matrix equations (e.g., AX+XB=C)
D9.  Overdetermined or underdetermined systems of equations, singular systems,
     pseudo-inverses (search also classes D5, D6, K1a, L8a)
E.  Interpolation
E1.  Univariate data (curve fitting)
E1A.  Polynomial splines (piecewise polynomials)
E1B.  Polynomials
E1C.  Other functions (e.g., rational, trigonometric)
E2.  Multivariate data (surface fitting)
E2A.  Gridded
E2B.  Scattered
E3.  Service routines (e.g., grid generation, evaluation of fitted functions)
     (search also class N5)
F.  Solution of nonlinear equations
F1.  Single equation
F1A.  Smooth
F1A1.  Polynomial
F1A1A.  Real coefficients
F1A1B.  Complex coefficients
F1A2.  Nonpolynomial
F1B.  General (no smoothness assumed)
F2.  System of equations
F2A.  Smooth
F2B.  General (no smoothness assumed)
F3.  Service routines (e.g., check user-supplied derivatives)
G.  Optimization (search also classes K, L8)
G1.  Unconstrained
G1A.  Univariate
G1A1.  Smooth function
G1A1A.  User provides no derivatives
G1A1B.  User provides first derivatives
G1A1C.  User provides first and second derivatives
G1A2.  General function (no smoothness assumed)
G1B.  Multivariate
G1B1.  Smooth function
G1B1A.  User provides no derivatives
G1B1B.  User provides first derivatives
G1B1C.  User provides first and second derivatives
G1B2.  General function (no smoothness assumed)
G2.  Constrained
G2A.  Linear programming
G2A1.  Dense matrix of constraints
G2A2.  Sparse matrix of constraints
G2B.  Transportation and assignments problem
G2C.  Integer programming
G2C1.  Zero/one
G2C2.  Covering and packing problems
G2C3.  Knapsack problems
G2C4.  Matching problems
G2C5.  Routing, scheduling, location problems
G2C6.  Pure integer programming
G2C7.  Mixed integer programming
G2D.  Network (for network reliability search class M)
G2D1.  Shortest path
G2D2.  Minimum spanning tree
G2D3.  Maximum flow
G2D3A.  Generalized networks
G2D3B.  Networks with side constraints
G2D4.  Test problem generation
G2E.  Quadratic programming
G2E1.  Positive definite Hessian (i.e. convex problem)
G2E2.  Indefinite Hessian
G2F.  Geometric programming
G2G.  Dynamic programming
G2H.  General nonlinear programming
G2H1.  Simple bounds
G2H1A.  Smooth function
G2H1A1.  User provides no derivatives
G2H1A2.  User provides first derivatives
G2H1A3.  User provides first and second derivatives
G2H1B.  General function (no smoothness assumed)
G2H2.  Linear equality or inequality constraints
G2H2A.  Smooth function
G2H2A1.  User provides no derivatives
G2H2A2.  User provides first derivatives
G2H2A3.  User provides first and second derivatives
G2H2B.  General function (no smoothness assumed)
G2H3.  Nonlinear constraints
G2H3A.  Equality constraints only
G2H3A1.  Smooth function and constraints
G2H3A1A.  User provides no derivatives
G2H3A1B.  User provides first derivatives of function and constraints
G2H3A1C.  User provides first and second derivatives of function and
G2H3A2.  General function and constraints (no smoothness assumed)
G2H3B.  Equality and inequality constraints
G2H3B1.  Smooth function and constraints
G2H3B1A.  User provides no derivatives
G2H3B1B.  User provides first derivatives of function and constraints
G2H3B1C.  User provides first and second derivatives of function and
G2H3B2.  General function and constraints (no smoothness assumed)
G2I.  Global solution to nonconvex problems
G3.  Optimal control
G4.  Service routines
G4A.  Problem input (e.g., matrix generation)
G4B.  Problem scaling
G4C.  Check user-supplied derivatives
G4D.  Find feasible point
G4E.  Check for redundancy
G4F.  Other
H.  Differentiation, integration
H1.  Numerical differentiation
H2.  Quadrature (numerical evaluation of definite integrals)
H2A.  One-dimensional integrals
H2A1.  Finite interval (general integrand)
H2A1A.  Integrand available via user-defined procedure
H2A1A1.  Automatic (user need only specify required accuracy)
H2A1A2.  Nonautomatic
H2A1B.  Integrand available only on grid
H2A1B1.  Automatic (user need only specify required accuracy)
H2A1B2.  Nonautomatic
H2A2.  Finite interval (specific or special type integrand including weight
       functions, oscillating and singular integrands, principal value
       integrals, splines, etc.)
H2A2A.  Integrand available via user-defined procedure
H2A2A1.  Automatic (user need only specify required accuracy)
H2A2A2.  Nonautomatic
H2A2B.  Integrand available only on grid
H2A2B1.  Automatic (user need only specify required accuracy)
H2A2B2.  Nonautomatic
H2A3.  Semi-infinite interval (including e**(-x) weight function)
H2A3A.  Integrand available via user-defined procedure
H2A3A1.  Automatic (user need only specify required accuracy)
H2A3A2.  Nonautomatic
H2A4.  Infinite interval (including e**(-x**2)) weight function)
H2A4A.  Integrand available via user-defined procedure
H2A4A1.  Automatic (user need only specify required accuracy)
H2A4A2.  Nonautomatic
H2B.  Multidimensional integrals
H2B1.  One or more hyper-rectangular regions
H2B1A.  Integrand available via user-defined procedure
H2B1A1.  Automatic (user need only specify required accuracy)
H2B1A2.  Nonautomatic
H2B1B.  Integrand available only on grid
H2B1B1.  Automatic (user need only specify required accuracy)
H2B1B2.  Nonautomatic
H2B2.  Nonrectangular region, general region
H2B2A.  Integrand available via user-defined procedure
H2B2A1.  Automatic (user need only specify required accuracy)
H2B2A2.  Nonautomatic
H2B2B.  Integrand available only on grid
H2B2B1.  Automatic (user need only specify required accuracy)
H2B2B2.  Nonautomatic
H2C.  Service routines (compute weight and nodes for quadrature formulas)
J.  Integral transforms
J1.  Fast Fourier transforms (search class L10 for time series analysis)
J1A.  One-dimensional
J1A1.  Real
J1A2.  Complex
J1A3.  Trigonometric (sine, cosine)
J1B.  Multidimensional
J2.  Convolutions
J3.  Laplace transforms
J4.  Hilbert transforms
K.  Approximation (search also class L8)
K1.  Least squares (L-2) approximation
K1A.  Linear least squares (search also classes D5, D6, D9)
K1A1.  Unconstrained
K1A1A.  Univariate data (curve fitting)
K1A1A1.  Polynomial splines (piecewise polynomials)
K1A1A2.  Polynomials
K1A1A3.  Other functions (e.g., rational, trigonometric, user-specified)
K1A1B.  Multivariate data (surface fitting)
K1A2.  Constrained
K1A2A.  Linear constraints
K1A2B.  Nonlinear constraints
K1B.  Nonlinear least squares
K1B1.  Unconstrained
K1B1A.  Smooth functions
K1B1A1.  User provides no derivatives
K1B1A2.  User provides first derivatives
K1B1A3.  User provides first and second derivatives
K1B1B.  General functions
K1B2.  Constrained
K1B2A.  Linear constraints
K1B2B.  Nonlinear constraints
K2.  Minimax (L-infinity) approximation
K3.  Least absolute value (L-1) approximation
K4.  Other analytic approximations (e.g., Taylor polynomial, Pade)
K5.  Smoothing
K6.  Service routines (e.g., mesh generation, evaluation of fitted functions)
     (search also class N5)
L.  Statistics, probability
L1.  Data summarization
L1A.  One univariate quantitative sample
L1A1.  Ungrouped data
L1A1A.  Location
L1A1B.  Dispersion
L1A1C.  Shape
L1A1D.  Distribution, density
L1A2.  Ungrouped data with missing values
L1A3.  Grouped data
L1A3A.  Location
L1A3B.  Dispersion
L1A3C.  Shape
L1C.  One univariate qualitative (proportional) sample
L1E.  Two or more univariate samples or one multivariate sample
L1E1.  Ungrouped data
L1E1A.  Location
L1E1B.  Correlation
L1E2.  Ungrouped data with missing values
L1E3.  Grouped data
L1F.  Two or more multivariate samples
L2.  Data manipulation (search also class N)
L2A.  Transform (search also class N6 for sorting, ranking)
L2B.  Group
L2C.  Sample
L2D.  Subset
L3.  Graphics (search also class Q)
L3A.  Histograms
L3B.  Distribution functions
L3C.  Scatter diagrams
L3C1.  Y vs. X
L3C2.  Symbol plots
L3C3.  Multiple plots
L3C4.  Probability plots
L3C4B.  Beta, binomial
L3C4C.  Cauchy, chi-squared
L3C4D.  Double exponential
L3C4E.  Exponential, extreme value
L3C4F.  F distribution
L3C4G.  Gamma, geometric
L3C4H.  Halfnormal
L3C4L.  Lambda, logistic, lognormal
L3C4N.  Negative binomial, normal
L3C4P.  Pareto, Poisson
L3C4T.  t distribution
L3C4U.  Uniform
L3C4W.  Weibull
L3C5.  Time series plots (X(i) vs. i, vertical, lag)
L3D.  EDA graphics
L4.  Elementary statistical inference, hypothesis testing
L4A.  One univariate quantitative sample
L4A1.  Ungrouped data
L4A1A.  Parameter estimation
L4A1A2.  Binomial
L4A1A5.  Extreme value
L4A1A14.  Normal
L4A1A16.  Poisson
L4A1A21.  Uniform
L4A1A23.  Weibull
L4A1B.  Distribution-free (nonparametric) analysis
L4A1C.  Goodness-of-fit tests
L4A1D.  Tests on sequences of numbers
L4A1E.  Density and distribution function estimation
L4A1F.  Tolerance limits
L4A2.  Ungrouped data with missing values
L4A3.  Grouped data
L4A3A.  Parameter estimation
L4A3A14.  Normal
L4B.  Two or more univariate quantitative samples
L4B1.  Ungrouped data
L4B1A.  Parameter estimation
L4B1A14.  Normal
L4B1B.  Distribution-free (nonparametric) analysis
L4B2.  Ungrouped data with missing values
L4B3.  Grouped data
L4C.  One univariate qualitative (proportional) sample
L4D.  Two or more univariate samples
L4E.  One multivariate sample
L4E1.  Ungrouped data
L4E1A.  Parameter estimation
L4E1A14.  Normal
L4E1B.  Distribution-free (nonparametric) analysis
L4E2.  Ungrouped data with missing values
L4E2A.  Parameter estimation
L4E2B.  Distribution-free (nonparametric) analysis
L4E3.  Grouped data
L4E3A.  Parameter estimation
L4E3A14.  Normal
L4E3B.  Distribution-free (nonparametric) analysis
L4E4.  Two or more multivariate samples
L4E4A.  Parameter estimation
L4E4A14.  Normal
L5.  Function evaluation (search also class C)
L5A.  Univariate
L5A1.  Cumulative distribution functions, probability density functions
L5A1B.  Beta, binomial
L5A1C.  Cauchy, chi-squared
L5A1D.  Double exponential
L5A1E.  Error function, exponential, extreme value
L5A1F.  F distribution
L5A1G.  Gamma, general, geometric
L5A1H.  Halfnormal, hypergeometric
L5A1K.  Kolmogorov-Smirnov
L5A1L.  Lambda, logistic, lognormal
L5A1N.  Negative binomial, normal
L5A1P.  Pareto, Poisson
L5A1T.  t distribution
L5A1U.  Uniform
L5A1W.  Weibull
L5A2.  Inverse cumulative distribution functions, sparsity functions
L5A2B.  Beta, binomial
L5A2C.  Cauchy, chi-squared
L5A2D.  Double exponential
L5A2E.  Exponential, extreme value
L5A2F.  F distribution
L5A2G.  Gamma, general, geometric
L5A2H.  Halfnormal
L5A2L.  Lambda, logistic, lognormal
L5A2N.  Negative binomial, normal, normal scores
L5A2P.  Pareto, Poisson
L5A2T.  t distribution
L5A2U.  Uniform
L5A2W.  Weibull
L5B.  Multivariate
L5B1.  Cumulative distribution functions, probability density functions
L5B1N.  Normal
L6.  Pseudo-random number generation
L6A.  Univariate
L6A2.  Beta, binomial, Boolean
L6A3.  Cauchy, chi-squared
L6A4.  Double exponential
L6A5.  Exponential, extreme value
L6A6.  F distribution
L6A7.  Gamma, general (continuous, discrete) distributions, geometric
L6A8.  Halfnormal, hypergeometric
L6A9.  Integers
L6A12.  Lambda, logical, logistic, lognormal
L6A14.  Negative binomial, normal
L6A15.  Order statistics
L6A16.  Pareto, permutations, Poisson
L6A19.  Samples, stable distribution
L6A20.  t distribution, time series, triangular
L6A21.  Uniform
L6A22.  Von Mises
L6A23.  Weibull
L6B.  Multivariate
L6B3.  Contingency table, correlation matrix
L6B13.  Multinomial
L6B14.  Normal
L6B15.  Orthogonal matrix
L6B21.  Uniform
L6C.  Service routines (e.g., seed)
L7.  Experimental design, including analysis of variance
L7A.  Univariate
L7A1.  One-way analysis of variance
L7A1A.  Parametric analysis
L7A1A1.  Contrasts, multiple comparisons
L7A1A2.  Analysis of variance components
L7A1B.  Distribution-free (nonparametric) analysis
L7A2.  Balanced multiway design
L7A2A.  Complete
L7A2A1.  Parametric analysis
L7A2A1A.  Two-way
L7A2A1B.  Factorial
L7A2A1C.  Nested
L7A2A2.  Distribution-free (nonparametric) analysis
L7A2B.  Incomplete
L7A2B1.  Parametric analysis
L7A2B1A.  Latin square
L7A2B1B.  Lattice designs
L7A2B2.  Distribution-free (nonparametric) analysis
L7A3.  Analysis of covariance
L7A4.  General linear model (unbalanced design)
L7A4A.  Parametric analysis
L7A4B.  Distribution-free (nonparametric) analysis
L7B.  Multivariate
L8.  Regression (search also classes G, K)
L8A.  Linear least squares (L-2) (search also classes D5, D6, D9)
L8A1.  Simple
L8A1A.  Ordinary
L8A1A1.  Unweighted
L8A1A1A.  No missing values
L8A1A1B.  Missing values
L8A1A2.  Weighted
L8A1B.  Through the origin
L8A1C.  Errors in variables
L8A1D.  Calibration (inverse regression)
L8A2.  Polynomial
L8A2A.  Not using orthogonal polynomials
L8A2A1.  Unweighted
L8A2A2.  Weighted
L8A2B.  Using orthogonal polynomials
L8A2B1.  Unweighted
L8A2B2.  Weighted
L8A3.  Piecewise polynomial (i.e. multiphase or spline)
L8A4.  Multiple
L8A4A.  Ordinary
L8A4A1.  Unweighted
L8A4A1A.  No missing values
L8A4A1B.  Missing values
L8A4A1C.  From correlation data
L8A4A1D.  Using principal components
L8A4A1E.  Using preference pairs
L8A4A2.  Weighted
L8A4B.  Errors in variables
L8A4D.  Logistic
L8A5.  Variable selection
L8A6.  Regression design
L8A7.  Several multiple regressions
L8A8.  Multivariate
L8A9.  Diagnostics
L8A10.  Hypothesis testing, inference
L8A10A.  Lack-of-fit tests
L8A10B.  Analysis of residuals
L8A10C.  Inference
L8B.  Biased (ridge)
L8C.  Linear least absolute value (L-1)
L8D.  Linear minimax (L-infinity)
L8E.  Robust
L8G.  Nonlinear
L8G1.  Unweighted
L8G1A.  Derivatives not supplied
L8G1B.  Derivatives supplied
L8G2.  Weighted
L8G2A.  Derivatives not supplied
L8G2B.  Derivatives supplied
L8H.  Service routines
L9.  Categorical data analysis
L9A.  2-by-2 tables
L9B.  Two-way tables
L9C.  Log-linear model
L9D.  EDA (e.g., median polish)
L10.  Time series analysis (search also class L3c5 for time series graphics)
L10A.  Transformations, transforms (search also class J1)
L10B.  Smoothing, filtering
L10C.  Autocorrelation analysis
L10D.  Complex demodulation
L10E.  ARMA and ARIMA modeling and forecasting
L10E1.  Model and parameter estimation
L10E2.  Forecasting
L10F.  Spectral analysis
L10G.  Cross-correlation analysis
L10G1.  Parameter estimation
L10G2.  Forecasting
L11.  Correlation analysis
L12.  Discriminant analysis
L13.  Factor analysis
L13A.  Principal components analysis
L14.  Cluster analysis
L14A.  Unconstrained
L14A1.  Nested
L14A1A.  Joining (e.g., single link)
L14A1B.  Divisive
L14A2.  Non-nested
L14B.  Constrained
L14B1.  One-dimensional
L14B2.  Two-dimensional
L14C.  Display
L15.  Life testing, survival analysis
M.  Simulation, stochastic modeling (search also classes L6, L10)
M1.  Simulation
M1A.  Discrete
M1B.  Continuous (Markov models)
M2.  Queueing
M3.  Reliability
M3A.  Quality control
M3B.  Electrical network
M4.  Project optimization (e.g., PERT)
N.  Data handling (search also class L2)
N1.  Input, output
N2.  Bit manipulation
N3.  Character manipulation
N4.  Storage management (e.g., stacks, heaps, trees)
N5.  Searching
N5A.  Extreme value
N5B.  Insertion position
N5C.  On a key
N6.  Sorting
N6A.  Internal
N6A1.  Passive (i.e. construct pointer array, rank)
N6A1A.  Integer
N6A1B.  Real
N6A1B1.  Single precision
N6A1B2.  Double precision
N6A1C.  Character
N6A2.  Active
N6A2A.  Integer
N6A2B.  Real
N6A2B1.  Single precision
N6A2B2.  Double precision
N6A2C.  Character
N6B.  External
N7.  Merging
N8.  Permuting
O.  Symbolic computation
Q.  Graphics (search also classes L3, P)
Q1.  Line printer plotting
R.  Service routines
R1.  Machine-dependent constants
R2.  Error checking (e.g., check monotonicity)
R3.  Error handling
R3A.  Set criteria for fatal errors
R3B.  Set unit number for error messages
R3C.  Other utility programs
R4.  Documentation retrieval
S.  Software development tools
S1.  Program transformation
S2.  Static analysis
S3.  Dynamic analysis
Z.  Other