[CONTACT]

[ABOUT]

[POLICY]

ODRPACK ARGUMENT DEFINITIONS FCN NAME

Found at: ftp.icm.edu.pl:70/packages/netlib/odrpack/d_drive1.f

      PROGRAM SAMPLE

C  ODRPACK ARGUMENT DEFINITIONS
C      ==> FCN      NAME OF THE USER SUPPLIED FUNCTION SUBROUTINE
C      ==> N        NUMBER OF OBSERVATIONS 
C      ==> M        COLUMNS OF DATA IN THE EXPLANATORY VARIABLE
C      ==> NP       NUMBER OF PARAMETERS
C      ==> NQ       NUMBER OF RESPONSES PER OBSERVATION
C     <==> BETA     FUNCTION PARAMETERS
C      ==> Y        RESPONSE VARIABLE
C      ==> LDY      LEADING DIMENSION OF ARRAY Y
C      ==> X        EXPLANATORY VARIABLE
C      ==> LDX      LEADING DIMENSION OF ARRAY X
C      ==> WE       "EPSILON" WEIGHTS
C      ==> LDWE     LEADING DIMENSION OF ARRAY WE
C      ==> LD2WE    SECOND DIMENSION OF ARRAY WE
C      ==> WD       "DELTA" WEIGHTS
C      ==> LDWD     LEADING DIMENSION OF ARRAY WD
C      ==> LD2WD    SECOND DIMENSION OF ARRAY WD
C      ==> IFIXB    INDICATORS FOR "FIXING" PARAMETERS (BETA)
C      ==> IFIXX    INDICATORS FOR "FIXING" EXPLANATORY VARIABLE (X)
C      ==> LDIFX    LEADING DIMENSION OF ARRAY IFIXX
C      ==> JOB      TASK TO BE PERFORMED 
C      ==> NDIGIT   GOOD DIGITS IN SUBROUTINE FUNCTION RESULTS
C      ==> TAUFAC   TRUST REGION INITIALIZATION FACTOR
C      ==> SSTOL    SUM OF SQUARES CONVERGENCE CRITERION
C      ==> PARTOL   PARAMETER CONVERGENCE CRITERION
C      ==> MAXIT    MAXIMUM NUMBER OF ITERATIONS
C      ==> IPRINT   PRINT CONTROL 
C      ==> LUNERR   LOGICAL UNIT FOR ERROR REPORTS 
C      ==> LUNRPT   LOGICAL UNIT FOR COMPUTATION REPORTS 
C      ==> STPB     STEP SIZES FOR FINITE DIFFERENCE DERIVATIVES WRT BETA
C      ==> STPD     STEP SIZES FOR FINITE DIFFERENCE DERIVATIVES WRT DELTA
C      ==> LDSTPD   LEADING DIMENSION OF ARRAY STPD
C      ==> SCLB     SCALE VALUES FOR PARAMETERS BETA
C      ==> SCLD     SCALE VALUES FOR ERRORS DELTA IN EXPLANATORY VARIABLE 
C      ==> LDSCLD   LEADING DIMENSION OF ARRAY SCLD
C     <==> WORK     DOUBLE PRECISION WORK VECTOR
C      ==> LWORK    DIMENSION OF VECTOR WORK
C     <==  IWORK    INTEGER WORK VECTOR
C      ==> LIWORK   DIMENSION OF VECTOR IWORK
C     <==  INFO     STOPPING CONDITION 
 
C  PARAMETERS SPECIFYING MAXIMUM PROBLEM SIZES HANDLED BY THIS DRIVER
C     MAXN          MAXIMUM NUMBER OF OBSERVATIONS 
C     MAXM          MAXIMUM NUMBER OF COLUMNS IN EXPLANATORY VARIABLE
C     MAXNP         MAXIMUM NUMBER OF FUNCTION PARAMETERS
C     MAXNQ         MAXIMUM NUMBER OF RESPONSES PER OBSERVATION

C  PARAMETER DECLARATIONS AND SPECIFICATIONS
      INTEGER    LDIFX,LDSCLD,LDSTPD,LDWD,LDWE,LDX,LDY,LD2WD,LD2WE,
     +           LIWORK,LWORK,MAXM,MAXN,MAXNP,MAXNQ
      PARAMETER (MAXM=5,MAXN=25,MAXNP=5,MAXNQ=1,
     +           LDY=MAXN,LDX=MAXN,
     +           LDWE=1,LD2WE=1,LDWD=1,LD2WD=1,
     +           LDIFX=MAXN,LDSTPD=1,LDSCLD=1,
     +           LWORK=18 + 11*MAXNP + MAXNP**2 + MAXM + MAXM**2 + 
     +                 4*MAXN*MAXNQ + 6*MAXN*MAXM + 2*MAXN*MAXNQ*MAXNP +  
     +                 2*MAXN*MAXNQ*MAXM + MAXNQ**2 + 
     +                 5*MAXNQ + MAXNQ*(MAXNP+MAXM) + LDWE*LD2WE*MAXNQ,
     +           LIWORK=20+MAXNP+MAXNQ*(MAXNP+MAXM))

C  VARIABLE DECLARATIONS 
      INTEGER          I,INFO,IPRINT,J,JOB,L,LUNERR,LUNRPT,M,MAXIT,N,
     +                 NDIGIT,NP,NQ
      INTEGER          IFIXB(MAXNP),IFIXX(LDIFX,MAXM),IWORK(LIWORK)
      DOUBLE PRECISION PARTOL,SSTOL,TAUFAC
      DOUBLE PRECISION BETA(MAXNP),SCLB(MAXNP),SCLD(LDSCLD,MAXM),
     +                 STPB(MAXNP),STPD(LDSTPD,MAXM),
     +                 WD(LDWD,LD2WD,MAXM),WE(LDWE,LD2WE,MAXNQ),
     +                 WORK(LWORK),X(LDX,MAXM),Y(LDY,MAXNQ)
      EXTERNAL         FCN


C  SPECIFY DEFAULT VALUES FOR DODRC ARGUMENTS
      WE(1,1,1)  = -1.0D0
      WD(1,1,1)  = -1.0D0
      IFIXB(1)   = -1
      IFIXX(1,1) = -1
      JOB        = -1
      NDIGIT     = -1
      TAUFAC     = -1.0D0
      SSTOL      = -1.0D0
      PARTOL     = -1.0D0
      MAXIT      = -1
      IPRINT     = -1
      LUNERR     = -1
      LUNRPT     = -1
      STPB(1)    = -1.0D0
      STPD(1,1)  = -1.0D0
      SCLB(1)    = -1.0D0
      SCLD(1,1)  = -1.0D0

C  SET UP ODRPACK REPORT FILES
      LUNERR  =   9
      LUNRPT  =   9
      OPEN (UNIT=9,FILE='REPORT1')

C  READ PROBLEM DATA, AND SET NONDEFAULT VALUE FOR ARGUMENT IFIXX
      OPEN (UNIT=5,FILE='DATA1')
      READ (5,FMT=*) N,M,NP,NQ
      READ (5,FMT=*) (BETA(I),I=1,NP)
      DO 10 I=1,N
         READ (5,FMT=*) (X(I,J),J=1,M),(Y(I,L),L=1,NQ)
         IF (X(I,1).EQ.0.0D0 .OR. X(I,1).EQ.100.0D0) THEN
            IFIXX(I,1) = 0
         ELSE
            IFIXX(I,1) = 1
         END IF
   10 CONTINUE

C  SPECIFY TASK: EXPLICIT ORTHOGONAL DISTANCE REGRESSION
C                WITH USER SUPPLIED DERIVATIVES (CHECKED)
C                COVARIANCE MATRIX CONSTRUCTED WITH RECOMPUTED DERIVATIVES
C                DELTA INITIALIZED TO ZERO
C                NOT A RESTART
C  AND INDICATE SHORT INITIAL REPORT
C               SHORT ITERATION REPORTS EVERY ITERATION, AND
C               LONG FINAL REPORT
      JOB     = 00020
      IPRINT  = 1112

C  COMPUTE SOLUTION
      CALL DODRC(FCN,
     +           N,M,NP,NQ,
     +           BETA,
     +           Y,LDY,X,LDX,
     +           WE,LDWE,LD2WE,WD,LDWD,LD2WD,
     +           IFIXB,IFIXX,LDIFX,
     +           JOB,NDIGIT,TAUFAC,
     +           SSTOL,PARTOL,MAXIT,
     +           IPRINT,LUNERR,LUNRPT,
     +           STPB,STPD,LDSTPD,
     +           SCLB,SCLD,LDSCLD,
     +           WORK,LWORK,IWORK,LIWORK,
     +           INFO)
      END


      SUBROUTINE FCN(N,M,NP,NQ,
     +               LDN,LDM,LDNP,
     +               BETA,XPLUSD,
     +               IFIXB,IFIXX,LDIFX,
     +               IDEVAL,F,FJACB,FJACD,
     +               ISTOP)

C  SUBROUTINE ARGUMENTS
C      ==> N        NUMBER OF OBSERVATIONS
C      ==> M        NUMBER OF COLUMNS IN EXPLANATORY VARIABLE
C      ==> NP       NUMBER OF PARAMETERS
C      ==> NQ       NUMBER OF RESPONSES PER OBSERVATION
C      ==> LDN      LEADING DIMENSION DECLARATOR EQUAL OR EXCEEDING N
C      ==> LDM      LEADING DIMENSION DECLARATOR EQUAL OR EXCEEDING M
C      ==> LDNP     LEADING DIMENSION DECLARATOR EQUAL OR EXCEEDING NP
C      ==> BETA     CURRENT VALUES OF PARAMETERS
C      ==> XPLUSD   CURRENT VALUE OF EXPLANATORY VARIABLE, I.E., X + DELTA
C      ==> IFIXB    INDICATORS FOR "FIXING" PARAMETERS (BETA)
C      ==> IFIXX    INDICATORS FOR "FIXING" EXPLANATORY VARIABLE (X)
C      ==> LDIFX    LEADING DIMENSION OF ARRAY IFIXX
C      ==> IDEVAL   INDICATOR FOR SELECTING COMPUTATION TO BE PERFORMED
C     <==  F        PREDICTED FUNCTION VALUES
C     <==  FJACB    JACOBIAN WITH RESPECT TO BETA
C     <==  FJACD    JACOBIAN WITH RESPECT TO ERRORS DELTA
C     <==  ISTOP    STOPPING CONDITION, WHERE
C                     0 MEANS CURRENT BETA AND X+DELTA WERE
C                       ACCEPTABLE AND VALUES WERE COMPUTED SUCCESSFULLY
C                     1 MEANS CURRENT BETA AND X+DELTA ARE
C                       NOT ACCEPTABLE;  ODRPACK SHOULD SELECT VALUES 
C                       CLOSER TO MOST RECENTLY USED VALUES IF POSSIBLE
C                    -1 MEANS CURRENT BETA AND X+DELTA ARE
C                       NOT ACCEPTABLE;  ODRPACK SHOULD STOP

C  INPUT ARGUMENTS, NOT TO BE CHANGED BY THIS ROUTINE:
      INTEGER          I,IDEVAL,ISTOP,L,LDIFX,LDM,LDN,LDNP,M,N,NP,NQ
      DOUBLE PRECISION BETA(NP),XPLUSD(LDN,M)
      INTEGER          IFIXB(NP),IFIXX(LDIFX,M)
C  OUTPUT ARGUMENTS:
      DOUBLE PRECISION F(LDN,NQ),FJACB(LDN,LDNP,NQ),FJACD(LDN,LDM,NQ)
C  LOCAL VARIABLES
      INTRINSIC        EXP


C  CHECK FOR UNACCEPTABLE VALUES FOR THIS PROBLEM
      IF (BETA(1) .LT. 0.0D0) THEN
         ISTOP = 1
         RETURN
      ELSE
         ISTOP = 0
      END IF

C  COMPUTE PREDICTED VALUES
      IF (MOD(IDEVAL,10).GE.1) THEN
         DO 110 L = 1,NQ
            DO 100 I = 1,N
               F(I,L) = BETA(1) + 
     +                  BETA(2)*(EXP(BETA(3)*XPLUSD(I,1)) - 1.0D0)**2
  100       CONTINUE
  110    CONTINUE
      END IF

C  COMPUTE DERIVATIVES WITH RESPECT TO BETA
      IF (MOD(IDEVAL/10,10).GE.1) THEN
         DO 210 L = 1,NQ
            DO 200 I = 1,N
               FJACB(I,1,L) = 1.0D0
               FJACB(I,2,L) = (EXP(BETA(3)*XPLUSD(I,1)) - 1.0D0)**2
               FJACB(I,3,L) = BETA(2)*2*
     +                        (EXP(BETA(3)*XPLUSD(I,1)) - 1.0D0)*
     +                        EXP(BETA(3)*XPLUSD(I,1))*XPLUSD(I,1)
  200       CONTINUE
  210    CONTINUE
      END IF

C  COMPUTE DERIVATIVES WITH RESPECT TO DELTA
      IF (MOD(IDEVAL/100,10).GE.1) THEN
         DO 310 L = 1,NQ
            DO 300 I = 1,N
               FJACD(I,1,L) = BETA(2)*2*
     +                        (EXP(BETA(3)*XPLUSD(I,1)) - 1.0D0)*
     +                        EXP(BETA(3)*XPLUSD(I,1))*BETA(3)
  300       CONTINUE
  310    CONTINUE
      END IF

      RETURN
      END

.


AD:

NEW PAGES:

[ODDNUGGET]

[GOPHER]